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Introduction
A Dataset is unbalanced when the class of interest (minority class) is much smaller or rarer
than normal behaviour (majority class), e.g. in fraud detection we want to classify trans-
actions as fraud or genuine, but fraud class is rare. Classification algorithms in general
suffer when the data is skewed towards one class. A standard solution is undersampling,
i.e. removing observations from the majority class until the datasets is balanced.

Warping effect on the posterior probability
Let p be the posterior probability of a classifier to predict an instance as belonging to the
minority class. After undersampling we get ps and we can write:

ps =
p

p+ β(1− p)
(1)

where β is the probability of selecting a majority instance.

3 15

0

500

1000

1500

−10 0 10 20 −10 0 10 20
x

C
ou

nt class
0
1

Figure 1: ps as a function of β (left) and class distribution (right).

Posterior probability ranking
Let us denote by p̂ (resp. p̂s) the estimation of p (resp. ps). Assume we have two distinct
test points with p1 < p2 where ∆p = p2−p1 > 0. Let p̂1 = p1+ ε1 and p̂2 = p2+ ε2,
with ε ∼ N(b, ν) where b and ν are the bias and the variance of the estimator of p. By
making an hypothesis of normality we have a wrong ranking if p̂1 > p̂2 with probability:

P(p̂2 < p̂1) = P(p2 + ε2 < p1 + ε1) = P(ε1 − ε2 > ∆p) = 1−Φ


∆p√
2ν

 (2)

where ε2−ε1 ∼ N(0, 2ν) andΦ is the cumulative function of the normal distribution. Let
p̂s,1 = ps,1+η1 and p̂s,2 = ps,2+η2, where η ∼ N(bs, νs), νs > ν and ∆ps = ps,2−ps,1.

P(p̂s,2 < p̂s,1) = P(η1 − η2 > ∆ps) = 1−Φ


∆ps√
2νs

 (3)

A classifier trained after undersampling has better ranking w.r.t. a classifier learned with
unbalanced distribution when P(p̂2 < p̂1) > P(p̂s,2 < p̂s,1), using (2) and (3):

1−Φ


∆p√
2ν

 > 1−Φ

∆ps√
2νs

 ⇔ Φ


∆p√
2ν

 < Φ

∆ps√
2νs

 ⇔ ∆p√
2ν
<
∆ps√
2νs

since Φ is monotone non decreasing and we can assume that νs > ν.
Then it follows that undersampling is useful (better ranking) when

dps

dp
=

β

(p+ β(1− p))2
>

√√√√√√√√√
νs

ν
(4)

where dps
dp

is the derivative of ps w.r.t. p.

Experimental Results

Synthetic data
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Figure 2: Left: dps
dp

(solid lines),
√√√√νs
ν
(dotted lines). Right: class conditional distributions

(thin lines) and the posterior distribution of the minority class (thicker line).
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Figure 3: Left:
√√√√νs
ν
(black) and different percentiles of dps

dp
. Right: Class distribution.

Table 1: Ranking correlation between the posterior probability p̂ (p̂s) and p for different
values of β. The value K (Ks) denotes the Kendall rank correlation without (with) un-
dersampling. The first (last) five lines refer to samples for which the condition (4) is (not)
satisfied.

β K Ks Ks − K %points satisfying (4)
0.053 0.298 0.749 0.451 88.8
0.076 0.303 0.682 0.379 89.7
0.112 0.315 0.619 0.304 91.2
0.176 0.323 0.555 0.232 92.1
0.323 0.341 0.467 0.126 93.7
0.053 0.749 0.776 0.027 88.8
0.076 0.755 0.773 0.018 89.7
0.112 0.762 0.764 0.001 91.2
0.176 0.767 0.761 -0.007 92.1
0.323 0.768 0.748 -0.020 93.7

Real data

Figure 4: Difference between the Kendall rank correlation of p̂s and p̂ with p, namely Ks

and K, for points having the conditions (4) satisfied and not on selected datasets from
the UCI repository. Ks and K are calculated as the mean of the correlations over all βs.

Summary and conclusions

Undersampling has two major effects: i) it increases the variance of the classifier and ii)
it produces warped posterior probabilities. Countermeasures: i) averaging strategies (e.g.
Bagging) and calibration of the probability to the new priors of the testing set [2].
When (4) is satisfied the posterior probability obtained after sampling returns a more ac-
curate ordering. Practical use (4) requires knowledge of p and νs

ν
(not easy to estimate).

Also (4) may not hold for all testing points and depends on β. This result warns against
a naive use of undersampling in unbalanced tasks and suggest the adoption of adaptive
selection techniques (e.g. racing [1]).
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