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Abstract. A well-known rule of thumb in unbalanced classification rec-
ommends the rebalancing (typically by resampling) of the classes before
proceeding with the learning of the classifier. Though this seems to work
for the majority of cases, no detailed analysis exists about the impact of
undersampling on the accuracy of the final classifier. This paper aims to
fill this gap by proposing an integrated analysis of the two elements which
have the largest impact on the effectiveness of an undersampling strat-
egy: the increase of the variance due to the reduction of the number of
samples and the warping of the posterior distribution due to the change
of priori probabilities. In particular we will propose a theoretical anal-
ysis specifying under which conditions undersampling is recommended
and expected to be effective. It emerges that the impact of undersam-
pling depends on the number of samples, the variance of the classifier,
the degree of imbalance and more specifically on the value of the poste-
rior probability. This makes difficult to predict the average effectiveness
of an undersampling strategy since its benefits depend on the distribu-
tion of the testing points. Results from several synthetic and real-world
unbalanced datasets support and validate our findings.

Keywords: Undersampling; Ranking; Class Overlap, Unbalanced clas-
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1 Introduction

In several binary classification problems, the two classes are not equally repre-
sented in the dataset. For example, in fraud detection, fraudulent transactions
are normally outnumbered by genuine ones [5]. When one class is underrepre-
sented in a dataset, the data is said to be unbalanced. In such problems, typically,
the minority class is the class of interest. Having few instances of one class means
that the learning algorithm is often unable to generalize the behavior of the mi-
nority class well, hence the algorithm performs poorly in terms of predictive
accuracy [14].

When the data is unbalanced, standard machine learning algorithms that
maximise overall accuracy tend to classify all observations as majority class in-
stances. This translates into poor accuracy on the minority class (low recall),
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which is typically the class of interest. Degradation of classification performance
is not only related to a small number of examples in the minority class in com-
parison to the number of examples in the majority classes (expressed by the
class imbalance ratio), but also to the minority class decomposition into small
sub-parts [19] (also known in the literature as small disjuncts [15]) and to the
overlap between the two classes [16] [3] [11] [10]. In these studies it emerges that
performance degradation is strongly caused by the presence of both unbalanced
class distributions and a high degree of class overlap. Additionally, in unbalanced
classification tasks, the performance of a classifier is also affected by the presence
of noisy examples [20] [2].

One possible way to deal with this issue is to adjust the algorithms them-
selves [14] [23] [7]. Here we will consider instead a data-level strategy known as
undersampling [13]. Undersampling consists in down-sizing the majority class by
removing observations at random until the dataset is balanced. In an unbalanced
problem, it is often realistic to assume that many observations of the majority
class are redundant and that by removing some of them at random the data
distribution will not change significantly. However the risk of removing relevant
observations from the dataset is still present, since the removal is performed
in an unsupervised manner. In practice, sampling methods are often used to
balance datasets with skewed class distributions because several classifiers have
empirically shown better performance when trained on balanced dataset [22] [9].
However, these studies do not imply that classifiers cannot learn from unbal-
anced datasets. For instance, other studies have also shown that some classifiers
do not improve their performances when the training dataset is balanced using
sampling techniques [4] [14]. As a result, the only way to know if sampling helps
the learning process is to run some simulations. Despite the popularity of un-
dersampling, we have to remark that there is not yet a theoretical framework
explaining how it can affect the accuracy of the learning process.

In this paper we aim to analyse the role of the two side-effects of undersam-
pling on the final accuracy. The first side-effect is that, by removing majority
class instances, we perturb the a priori probability of the training set and we
induce a warping in the posterior distribution [18,8]. The second is that the
number of samples available for training is reduced with an evident consequence
in terms of accuracy of the resulting classifier. We study the interaction between
these two effects of undersampling and we analyse their impact on the final rank-
ing of posterior probabilities. In particular we show under which conditions an
under sampling strategy is recommended and expected to be effective in terms
of final classification accuracy.

2 The warping effect of undersampling on the posterior
probability

Let us consider a binary classification task f: R™ — {0,1}, where X € R" is the
input and Y € {0,1} the output domain. In the following we will also use the
label negative (resp. positive) to denote the label 0 (resp. 1). Suppose that the
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Fig. 1. Undersampling: remove majority class observations until we have the same
number of instances in the two classes.

training set (X, )) of size N is unbalanced (i.e. the number N of positive cases
is small compared to the number N~ of negative ones) and that rebalancing is
performed by undersampling. Let (X,Y) C (X,)) be the balanced sample of
(X,Y) which contains a subset of the negatives in (X,)).

Let us introduce a random binary selection variable s associated to each
sample in (X, )), which takes the value 1 if the point is in (X, Y") and 0 otherwise.
We now derive how the posterior probability of a model learned on a balanced
subset relates to the one learned on the original unbalanced dataset, on the basis
of the reasoning presented in [17]. Let us assume that the selection variable s is
independent of the input z given the class y (class-dependent selection):

p(sly, ) = p(sly) (1)

where p(s = 1|y, z) is the probability that a point (x,y) is included in the bal-
anced training sample. Note that the undersampling mechanism has no impact
on the class-conditional distribution but that it perturbs the prior probability

(Le. p(yls = 1) # p(y)).

Let the sign + denote y = 1 and — denote y = 0, e.g. p(+,z) = p(y = 1, )
and p(—,z) = p(y = 0,z). From Bayes’ rule we can write:
p(s = 1|+, 2)p(+|z)

s = 14, z)p(+|z) + p(s = 1|—, z)p(—|z)

Using condition (1) in (2) we obtain:

p(+lz,s =1) = o (2)

p(s = 1|+)p(+|z)
s = 1|+)p(+]x) + p(s = 1|=)p(—|z)

With undersampling we have:

plrlrs=1)=

pls=114) =1 ()
and )

p — 1=

mﬁp(s—l‘ ) <1 (5)
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Fig. 2. p and ps at different 5. When S is low, undersampling is strong, which means
it is removing a lot of negatives, while for high values the removal is less strong. Low
values of 3 leads to a more balanced problem.

Note that if we set p(s = 1|—) = %, we obtain a balanced dataset where
the number of positive and negative instances is the same. At the same time, if
we set p(s = 1|]—) = 1, no negative instances are removed and no undersampling
takes place. Using (4), we can rewrite (3) as

p(t|z) P
P S e e e peata
where § = p(s = 1|—) is the probability of selecting a negative instance with
undersampling, p = p(+|z) is the true posterior probability of class + in the
original dataset, and ps = p(+|x, s = 1) is the true posterior probability of class
+ after sampling. Equation (6) quantifies the amount of warping of the posterior
probability due to undersampling. From it, we can derive p as a function of ps:

_ Bps
= Bp.—p.+1 0

The relation between p and p, (parametric in 3) is illustrated in Figure 2.
The top curve of Figure 2 refers to the complete balancing which corresponds to
8= % =~ x—f, assuming that %—t provides an accurate estimation of the ratio
of the prior probabilities.

Figure 3 illustrates the warping effect for two univariate (n = 1) classification
tasks. In both tasks the two classes are normally distributed (X¥_ ~ N(0,0) and
X; ~ N(p,0)), 0 =3 and p(+) = 0.1 but the degree of separability is different
(on the left large overlap for ;= 3 and on the right small overlap for p = 15).
It is easy to remark that the warping effect is larger in the low separable case.

As a final remark, consider that when 8 = %—t, the warping due to under-
sampling maps two close and low values of p into two values ps with a larger
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Fig. 3. Posterior probability as a function of 8 for two univariate binary classification
tasks with norm class conditional densities X~ ~ N(0,0) and X4 ~ N(u,0) (on the
left 4 = 3 and on the right ;1 = 15, in both examples o = 3). Note that p corresponds
to 8 =1and ps to 8 < 1.

distance. The opposite occurs for high values of p. In Section 3 we will show how
this has an impact on the ranking returned by estimations of p and p;.

3 The interaction between warping and variance of the
estimator

The previous section discussed the first consequence of under sampling, i.e. the
transformation of the original conditional distribution p into a warped condi-
tional distribution ps according to equation (6). The second consequence of un-
dersampling is the reduction of the training set size which inevitably leads to an
increase of the variance of the classifier. This section discusses how these two ef-
fects interact and their impact on the final accuracy of the classifier, by focusing
in particular on the accuracy of the ranking of the minority class (typically the
class of interest).

Undersampling transforms the original classification task (i.e. estimating the
conditional distribution p) into a new classification task (i.e. estimating the con-
ditional distribution pg). In what follows we aim to assess whether and when
under sampling has a beneficial effect by changing the target of the estimation
problem.

Let us denote by p (resp. ps) the estimation of the conditional probability p
(resp. ps). Assume we have two distinct test points having probabilities p; < ps
where Ap = pa—p; with Ap > 0. A correct classification aiming to rank the most
probable positive samples should rank ps before py, since the second test sample
has an higher probability of belonging to the positive class. Unfortunately the
values p; and py are not known and the ranking should rely on the estimated
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values p; and ps. For the sake of simplicity we will assume here that the estimator
of the conditional probability has the same bias and variance in the two test
points. This implies p1 = p1 + €1 and P2 = ps + €2, where €; and e; are two
realizations of the random variable € ~ N(b,v) where b and v are the bias and
the variance of the estimator of p. Note that the estimation errors €; and e; may
induce a wrong ranking if p; > po.

What happens if instead of estimating p we decide to estimate pg, as in
undersampling? Note that because of the monotone transformation (6), p1 <
D2 = Ps,1 < Ps,2. Is the ranking based on the estimations of ps 1 and p, 2 more
accurate than the one based on the estimations of p; and p?

In order to answer this question let us suppose that also the estimator of
ps is biased but that its variance is larger given the smaller number of samples.
Then ps1 = ps;1 + m and pso = pso + 12, where  ~ N(bs,vs), vs > v and
Aps = Ps,2 — Ps,1-

Let us now compute the derivative of ps w.r.t. p. From (6) we have:

dp (p+B(1-p)?
corresponding to a concave function. Let A be the value of p for which % =
A= VB-8
1-p
It follows that J )
Ps
B < <= 9
b =3 9)
and p )
Ps
1< < =, when 0 < p < A
dp B
while
dps
B8 < <1 when A < p < 1.
dp

In particular for p = 0 we have dps; = %dp while for p = 1 it holds dps = Bdp.
Let us now suppose that the quantity Ap is small enough to have an accurate
approximation % ~ %. We can define the probability of obtaining a wrong

ranking of p; and po as:
P(p2 <p1) = P(p2 +e2 <p1 +e1)
:P(62—61 <p1—p2):P(€1—62>Ap)

where €5 — €1 ~ N(0,2r). By making an hypothesis of normality we have

Ple,—es>Ap)=1—& (j%) (10)

where @ is the cumulative distribution function of the standard normal distri-
bution. Similarly, the probability of a ranking error with undersampling is:
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P(ﬁs,2 < ﬁs,l) = P(771 — 12 > Aps)

and

P —n2 > Aps) =1—¢<j§75> (11)

We can now say that a classifier learned after undersampling has better
ranking w.r.t. a classifier learned with unbalanced distribution when

P(er — ea > Ap) > P(m —n2 > Apy) (12)
or equivalently from (10) and (11) when

1—45(?%) >1—¢<j§%)®¢<j%) <@(j2])7ss>

which boils down to

Ap _ Aps  Aps Vs
— < & >a/—=>1 13
Vo o V2 Ap v (13)
since ¢ is monotone non decreasing and we can assume that v, > v.

Then it follows that undersampling is useful in terms of more accurate rank-

ing when
p Vs
e Ve )

The value of this inequality depends on several terms: the rate of under-
sampling 3, the ratio of the variances of the two classifiers and the posteriori
probability p of the testing point. Also the nonlinearity of the first left-hand
term suggests a complex interaction between the involved terms. For instance if
we plot the left-hand term of (14) as a function of the posteriori probability p
(Figure 4(a)) and of the value 8 (Figure 4(b)), it appears that most favourable
configurations for undersampling occur for the lowest values of the posteriori
probability (e.g. non separable or badly separable configurations) and interme-
diate 8 (neither too unbalanced nor too balanced). However if we modify £, this
has an impact on the size of the training set and consequently on the right-hand
term (i.e. variance ratio) too. Also, though the 8 term can be controlled by the
designer, the other two terms vary over the input space. This means that the
condition (14) does not necessarily hold for all the test points.

In order to illustrate the complexity of the interaction, let us consider two
univariate (n = 1) classification tasks where the minority class is normally dis-
tributed around zero and the majority class is distributed as a mixture of two
gaussians. Figure 5 and 6 show the non separable and separable case, respec-
tively: on the left side we plot the class conditional distributions (thin lines) and
the posterior distribution of the minority class (thicker line), while on the right
side we show the left and the right term of the inequality (14) (solid: left-hand
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term, dotted: right-hand term). What emerges form the figures is that the least
separable regions (i.e. the regions where the posteriori of the minority class is
low) are also the regions where undersampling helps more. However, the impact
of undersampling on the overall accuracy is difficult to be predicted since the
regions where undersampling is beneficial change with the characteristics of the
classification task and the rate 8 of undersampling.

beta= 0.1 beta= 0.4

Posterior probability
00 02 04 06 08 10 1.2

(a) Class conditional distributions (thin (b) ddp; (solid lines), /% (dotted lines).
lines) and the posterior distribution of the
minority class (thicker line).

Fig. 5. Non separable case. On the right we plot both terms of inequality (14) (solid:
left-hand, dotted: right-hand term) for 8 = 0.1 and 8 = 0.4
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(a) Class conditional distributions (thin (b) % (solid lines), /%= (dotted lines).
lines) and the posterior distribution of the
minority class (thicker line).

Fig. 6. Separable case. On the right we plot both terms of inequality (14) (solid: left-
hand, dotted: right-hand term) for 8 = 0.1 and 8 = 0.4

4 Experimental validation

In this section we assess the validity of the condition (14) by performing a number
of tests on synthetic and real datasets.

4.1 Synthetic datasets

We simulate two unbalanced tasks (5% and 25% of positive samples) with over-
lapping classes and generate a testing set and several training sets from the same
distribution. Figures 7(a) and Figure 9(a) show the distributions of the testing
sets for the two tasks.

In order to compute the variance of p and p, in each test point, we generate
1000 times a training set (N = 1000) and we estimate the conditional probability
on the basis of sample mean and covariance.

In Figure 7(b) (first task) we plot /% (dotted line) and three percentiles

(0.25,0.5,0.75) of ’%S vs. the rate of undersampling . It appears that for at
least 75% of the testing points, the term % is higher than /“=. In Figure 8(a)

the points surrounded with a triangle are those one for which Cfi’;; > \/? hold
when 8 = 0.053 (balanced dataset). For such samples we expect that ranking
returned by undersampling (i.e. based on p; ) is better than the one based on the
original data (i.e. based on p). The plot shows that undersampling is beneficial
in the region where the majority class is situated, which is also the area where
we expect to have low values of p. Figure 8(b) shows also that this region moves
towards the minority class when we do undersampling with 8 = 0.323 (90%
negatives, 10% positives after undersampling).

In order to measure the quality of the rankings based on ps and p we compute
the Kendall rank correlation of the two estimates with p, which is the true pos-
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(a) Synthetic dataset 1 (b) /%= and df; for different 3

Fig. 7. Left: distribution of the testing set where the positive samples account for 5%
of the ;otal. Right: plot of ‘fip; percentiles (25", 50" and 75'") and of = (black
dashed).

X1 X1

(a) Undersampling with 8 = 0.053 (b) Undersampling with g = 0.323

Fig. 8. Regions where undersampling should work. Triangles indicate the testing sam-
ples where the condition (14) holds for the dataset in Figure 7.

terior probability of the testing set that defines the correct ordering. In Table 1
we show the ranking correlations of ps (and p) with p for the samples where
the condition (14) (first five rows) holds and where it does not (last five rows).
The results indicate that points for which condition (14) is satisfied have indeed
better ranking with p, than p.
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Table 1. Classification task in Figure 7: Ranking correlation between the posterior
probability p (ps) and p for different values of 3. The value K (K;) denotes the Kendall
rank correlation without (with) undersampling. The first (last) five lines refer to sam-
ples for which the condition (14) is (not) satisfied.

B | K Ks Ks—K|%points satisfying (14)
0.053]|0.298 0.749 0.451 88.8
0.076/0.303 0.682 0.379 89.7
0.112]0.315 0.619 0.304 91.2
0.176]0.323 0.555 0.232 92.1
0.323]0.341 0.467 0.126 93.7
0.053|0.749 0.776 0.027 88.8
0.076/0.755 0.773 0.018 89.7
0.112]0.762 0.764 0.001 91.2
0.176/0.767 0.761 -0.007 92.1
0.323]0.768 0.748 -0.020 93.7

We repeated the experiments for the second task having a larger proportion
of positives (25%) (dataset 2 in Figure 9(a)). From the Figure 9(b), plotting %
and \/% as a function of (3, it appears that only the first two percentiles are over
\/% . This means that less points of the testing set satisfy the condition (14).

This is confirmed from the results in Table 2 where it appears that the benefit
due to undersampling is less significant than for the first task.

00082
— 00518
04408

X2

Xt ‘: ) I}

(a) Synthetic dataset 2 (b) y/% and dj;j for different g

Fig. 9. Left: distribution of the testing set where the positive samples account for 25%
of the total. Right: plot of df; percentiles (25", 50" and 75'") and of /2 (black
dashed).
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Table 2. Classification task in Figure 9: Ranking correlation between the posterior
probability p (ps) and p for different values of 3. The value K (K;) denotes the Kendall
rank correlation without (with) undersampling. The first (last) five lines refer to sam-
ples for which the condition (14) is (not) satisfied.

Jé] K Ks Ks—K|% points statisfying (14)
0.333(0.586 0.789 0.202 66.4
0.407]|0.588 0.761 0.172 66.6
0.500{0.605 0.738 0.133 68.1
0.619]0.628 0.715 0.087 70.3
0.778(0.653 0.693 0.040 73
0.333(0.900 0.869 -0.030 66.4
0.407(0.899 0.875 -0.024 66.6
0.500(0.894 0.874 -0.020 68.1
0.619(0.885 0.869 -0.016 70.3
0.778(0.870 0.856 -0.014 73

4.2 Real datasets

In this section we assess the validity of the condition (14) on a number of real
unbalanced binary classification tasks obtained by transforming some datasets
from the UCI repository [1] (Table 3)%.

Given the unavailability of the conditional posterior probability function, we
first approximate p by fitting a Random Forest over the entire dataset in order
to compute the left-hand term of (14). Then we use a boostrap procedure to
estimate p and apply undersampling to the original dataset to estimate ps. We
repeat bootstrap and undersampling 100 times to compute the right hand term
v/%. This allows us to define the subsets of points for which the condition (14)
holds.

Figure 10 reports the difference between Kendall rank correlation of p and
p, averaged over different levels of undersampling (proportions of majority vs.
minority: 90/10,80/20,60/40,50/50). Higher difference means that p, returns
a better ordering than p (assuming that the ranking provided by p is correct).
The plot distinguishes between samples for which condition (14) is satisfied and
not. In general we see that points with a positive difference corresponds to those
having the condition satisfied and the opposite for negative differences. These
results seem to confirm the experiments with synthetic data, where a better
ordering is given by ps when the condition (14) holds.

In Figure 11 we show the ratio of samples in each dataset satisfying con-
dition 14 averaged over all the (8)s. The proportion of points in which under-
sampling is useful changes heavily with the dataset considered. For example, in
the datasets wehicle, yeast, german and pima, underdamping returns a better

4 Transformed datasets are available at http://www.ulb.ac.be/di/map/adalpozz/
imbalanced-datasets.zip
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Table 3. Selected datasets from the UCI repository [1]

Datasets N Nt N~ NT/N
ecoli 336 35 301 0.10
glass 214 17 197 0.08

letter-a 20000 789 19211 0.04
letter-vowel 20000 3878 16122 0.19

ism 11180 260 10920 0.02
letter 20000 789 19211 0.04
oil 937 41 896 0.04
page 5473 560 4913 0.10
pendigits 10992 1142 9850 0.10
PhosS 11411 613 10798 0.05

satimage 6430 625 5805 0.10
segment 2310 330 1980 0.14
boundary 3505 123 3382 0.04
estate 5322 636 4686 0.12
cam 18916 942 17974 0.05
compustat 13657 520 13137 0.04
covtype 38500 2747 35753 0.07
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Fig. 10. Difference between the Kendall rank correlation of ps and p with p, namely s
and KC, for points having the conditions (14) satisfied and not. K, and K are calculated
as the mean of the correlations over all fs.

ordering for more than 80% of the samples, while the proportion drops to less
than 50% in the page dataset.

This seems to confirm our intuition that the right amount of undersampling
depends on the classification task (e.g. degree of non separability), the learning
algorithm and the targeted test set. It follows that there is no reason to believe
that undersampling until the two classes are perfectly balanced is the default
strategy to adopt.

It is also worthy to remark that the check of the condition (14) is not easy
to be done, since it involves the estimation of /% (ratio of the the variance
of the classifier before and after undersampling) and of %‘;—5, which demands the
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knowledge of the true posterior probability p. In practice since p is unknown
in real datasets, we can only rely on a data driven approximation of “Z;j. Also
the estimation of /== is an hard statistical problem, as known in the statistical

literature on ratio estimation [12].
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Fig. 11. Ratio between the number of sample satisfying condition 14 and all the in-
stances available in each dataset averaged over all the Ss.

5 Conclusion

Undersampling has become the de facto strategy to deal with skewed distribu-
tions, but, though easy to be justified, it conceals two major effects: i) it increases
the variance of the classifier and ii) it produces warped posterior probabilities.
The first effect is typically addressed by the use of averaging strategies (e.g.
UnderBagging [21]) to reduce the variability while the second requires the cali-
bration of the probability to the new priors of the testing set [18]. Despite the
popularity of undersampling for unbalanced classification tasks, it is not clear
how these two effects interact and when undersampling leads to better accuracy
in the classification task.

In this paper, we aimed to analyse the interaction between undersampling
and the ranking error of the posterior probability. We derive the condition (14)
under which undersampling can improve the ranking and we show that when it
is satisfied, the posterior probability obtained after sampling returns a more ac-
curate ordering of testing instances. To validate our claim we used first synthetic
and then real datasets, and in both cases we registered a better ranking with
undersampling when condition (14) was met. It is important to remark how this
condition shows that the beneficial impact of undersampling is strongly depen-
dent on the nature of the classification task (degree of unbalancedness and non
separability), on the variance of the classifier and as a consequence is extremely
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dependent on the specific test point. We think that this result sheds light on the
reason why several discordant results have been obtained in the literature about
the effectiveness of undersampling in unbalanced tasks.

However, the practical use of this condition is not straightforward since it
requires the knowledge of the posteriori probability and of the ratio of variances
before and after undersampling. It follows that this result should be used mainly
as a warning against a naive use of undersampling in unbalanced tasks and
should suggest instead the adoption of specific adaptive selection techniques (e.g.
racing [6]) to perform a case-by-case use (and calibration) of undersampling.
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