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Abstract. State-of-the-art classification algorithms suffer when the data
is skewed towards one class. This led to the development of a number
of techniques to cope with unbalanced data. However, as confirmed by
our experimental comparison, no technique appears to work consistently
better in all conditions. We propose to use a racing method to select
adaptively the most appropriate strategy for a given unbalanced task.
The results show that racing is able to adapt the choice of the strategy
to the specific nature of the unbalanced problem and to select rapidly
the most appropriate strategy without compromising the accuracy.
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1 Introduction

Learning from unbalanced datasets is a difficult task since most learning algo-
rithms are not designed to cope with a large difference between the number of
cases belonging to different classes [2]. The unbalanced nature of the data is
typical of many applications such as medical diagnosis, text classification and
oil spills detection. Credit card fraud detection [16, 6, 17] is another well-known
instance of highly unbalanced problem since (fortunately) the number of fraud-
ulent transactions is typically much smaller than legitimate ones. In literature
several methods for dealing with unbalanced datasets have been proposed. They
essentially belong to the following categories: sampling, ensemble and distance-
based.

The ratio between majority and minority class is not the only factor that
determines the difficulty of a classification/detection task. Another influential
factor is the amount of overlapping of the classes of interest [9]. Other studies [10,
14] showed that some methods are superior to others under certain conditions.

All these supports the idea that under different conditions, such as different
datasets and algorithms, the best methods may change. In particular, in credit
card fraud detection, the fraudulent behaviour evolves over the time changing
the distribution of the frauds and a method that worked well in the past could
become inaccurate afterward. Since in real large variate tasks it is hard to know
a priori the nature of the unbalanced tasks, the user is recommended to test all
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techniques with a consequent high computational cost. In this context we pro-
pose a racing strategy to accelerate the search of the strategy in an unbalanced
problem.

In this paper we first review the most common methods for dealing with un-
balanced data in a supervised context. Then we make an exhaustive comparison
of these methods on a real credit-card fraud dataset and nine public benchmark
datasets. The results show that there is no balancing technique which is consis-
tently the best one and that the best method depends on the algorithm applied
as well as the the dataset used. For this reason, we propose the adoption of a
racing strategy [15] to automatically select the most adequate technique for a
given dataset. The rationale of the racing strategy consists in testing in paral-
lel a set of alternative balancing strategies on a subset of the dataset and to
remove progressively the alternatives which are significantly worse. Our results
show that by adopting a racing strategy we are able to select in an efficient
manner either the best balancing method or a method which is not significantly
different from the best one. Moreover racing is able to reduce consistently the
computation needed before finding the right methods for the dataset.

2 Strategies for unbalanced classification

Let us consider a binary classification task where the distribution of the target
class is highly skewed. Let us call the majority class negative (coded as 0) and the
minority class as positive (coded as 1). When the data is unbalanced, standard
machine learning algorithms tend to be overwhelmed by the majority class [10].
There are several methods that deal with this problem and we can distinguish
them into the following main categories: sampling, ensemble, distance-based and
hybrid.
Sampling techniques do not take into consideration any class information in
removing or adding observations, yet they are easy to implement and to under-
stand. Undersampling [7] consists in down-sizing the majority class by removing
observations at random until the dataset is balanced. In an unbalanced problem
it is realistic to assume that many observations of the majority class are redun-
dant and that by removing some of them at random the resulting distribution
should not change much. Oversampling [7] consists in up-sizing the small class
at random decreasing the level of class imbalance. By replicating the minority
class until the two classes have equal frequency, oversampling increases the risk
of overfitting [7] by biasing the model towards the minority class. SMOTE [5]
over-samples the minority class by generating synthetic minority examples in the
neighborhood of observed ones. The idea is to form new minority examples by
interpolating between examples of the same class. This has the effect of creating
clusters around each minority observation.
Ensemble methods combine an unbalanced method with a classifier to explore
the majority and minority class distribution. BalanceCascade [13] is a supervised
strategy to undersample the majority class. This method iteratively removes the
majority class instances that are correctly classified by a boosting algorithm.
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EasyEnsemble [13] learns different aspects of the original majority class in an
unsupervised manner. This is done by creating different balanced training sets
by Undersampling, learning a model for each dataset and then combining all
predictions as in bagging.
The following methods make use of distance measures between input points ei-
ther to undersample or to remove noisy and borderline examples of each class.
Tomek link [19] removes observations from the negative class that are close to
the positive region in order to return a dataset that presents a better separa-
tion between the two classes. Let us consider two input examples xi and xj

belonging to different classes, and let d(xi, xj) be their distance. A (xi, xj) pair
is called a Tomek link if there is no example xk, such that d(xi, xk) < d(xi, xj) or
d(xj , xk) < d(xi, xj). Negative examples that are Tomek links are then removed
reducing the majority class. Condensed Nearest Neighbor (CNN) [8] is used to
select a subset S from the original unbalanced set T which is consistent with
T in the sense that S classifies T correctly with the one-nearest neighbor rule.
Since noisy examples are likely to be misclassified, many of them will be added
to the S set which means CNN rule is extremely sensitive to noise [21]. One-sided
Selection (OSS) [11] is an undersampling method resulting from the application
of Tomek links followed by the application of CNN. Edited Nearest Neighbor
(ENN) [20] removes any example whose class label differs from the class of at
least two of its three nearest neighbors. In this way majority examples that fall in
the minority region and isolated minority examples are removed. Neighborhood
Cleaning Rule (NCL) [12] modifies the ENN method by increasing the role of
data cleaning. Firstly, NCL removes negatives examples which are misclassified
by their 3-nearest neighbors. Secondly, the neighbors of each positive examples
are found and the ones belonging to the majority class are removed.
A set of hybrid strategies can be easily created by combining sampling, en-
semble and distance base techniques. In particular we consider the following
hybrids: SMOTEnsemble (EasyEnsemble with SMOTE), EnnSmote (SMOTE
after ENN), TomekUnder (Undersampling after Tomek), TomekEasyEnsemble
(EasyEnsemble after Tomek) and TomekSMOTE : (SMOTE after Tomek).

3 Racing for strategy selection

The variety of approaches discussed in Section 2 suggests that in a real situation
where we have no prior information about the data distribution, it is difficult to
decide which unbalanced strategy to use. In this case testing all alternatives is
not an option either because of the associated computational cost.

A possible solution comes form the adoption of the Racing approach which
was proposed in [15] to perform efficiently model selection in a learning task. The
principle of Racing consists in testing in parallel a set of alternatives and using
a statistical test to determine if an alternative is significantly worse than the
others. In that case such alternative is discarded from the competition, and the
computational effort is devoted to differentiate the remaining ones. Historically
the first example of Racing method is called Hoeffding Race since it relies on
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the Hoeffding theorem to decide when a model is significantly worse than the
others. The F-race version was proposed in [4] and combines the Friedman test
with Hoeffding Races [15] to eliminate inferior candidates as soon as enough
statistical evidence arises against them. In F-race, the Friedman test is used to
check whether there is evidence that at least one of the candidates is significantly
different from others and post-tests are applied to eliminate those candidate that
are significantly worse than the best one.

Here we adopt F-Race to search efficiently for the best strategy for unbal-
anced data. The candidates are assessed on different subsets of data and, each
time a new assessment is made, the Friedman multiple test is used to dismiss
significantly inferior candidates. We used a 10 fold cross validation to provide the
assessment measure to the race. If a candidate is significantly better than all the
others than the race is terminated without the need of using the whole dataset.
In case there is not evidence of worse/better methods, the race terminates when
the entire dataset is explored and the best candidate is the one with the best
average result.

4 Experimental results

We tested the 15 strategies for unbalanced data discussed in Section 2 on the
datasets of the following table:

Dataset ID Dataset name Size Input Prop 1 Class 1
1 breastcancer 698 10 34.52% class =4
2 car 1727 6 3.76% class = Vgood
3 forest 38501 54 7.13% class = Cottonwood/Willow
4 letter 19999 16 3.76% letter = W
5 nursery 12959 8 2.53% class = very recom
6 pima 768 8 34.89% class = 1
7 satimage 6433 36 9.73% class = 4
8 women 1472 9 22.62% class = long-term
9 spam 4601 57 42.14% class =1
10 fraud 527026 51 0.39% Fraud = 1

The first 9 datasets are from UCI [1] repository. UCI datasets that have
originally more than two response classes are transformed into binary by picking
one class as the minority and joining all the others to form the majority class.

The credit card fraud dataset was provided by a payment service provider
in Belgium. The fraud dataset is not available to the public because of the
confidentiality of the data. In fraud detection it is important to have a high
Precision and Recall, therefore we used F-measure as performance metric since
it is able to combines Precision and Recall into a single metric.

We started by testing on the fraud dataset different supervised algorithms
such as Random Forest, Neural Network, Support Vector Machine and Naive
Bayes. For the sake of reproducibility we used the implementation provided in
the R software [18] with default parameters.

Each algorithm was first tested on the entire fraud dataset using a 10 fold
cross validation for all the strategies. Naive Bayes is the only algorithm whose
performance is not sensitive to the adopted strategy and comparable to the
unbalanced strategy (i.e. the strategy leaving the data in the original status).
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In Figure 1 we can notice that for Support Vector Machine and Random For-
est the group of techniques that include oversampling (i.e. Oversampling and
SMOTE-related strategies) are performing better than the others. For most of
the algorithms, distance-based strategy (ENN, NCL, CNN, OSS and Tomek)
perform as bad as the unbalanced case. The highest F-measure is reached using
Random Forest algorithm with SMOTEnsemble.
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Fig. 1. Comparison of strategies for unbalanced data for the Fraud dataset in terms of
F-measure (the higher the better).

At this point we tested our strategies for unbalanced data on the public UCI
datasets. On some of them (e.g. Breast Cancer) no significant differences between
strategies was detected.

We used the Friedman test to detect differences in the methods across all
datasets. A post-hoc test based upon paired t-test of the ranks was used to
decide which methods are significantly different from each other (Figure 2).
From Figure 2 we can notice that with Random Forest, SMOTEnsemble was
statistically better than many of unbalanced strategies, while oversampling was
the best for SVM.

What emerges from this study is that there is no single strategy which is
coherently superior to all others in all conditions (i.e. algorithm and dataset).
Even if sometimes it is possible to find a strategy that is statistically better than
others it is computationally demanding testing all strategies in several dataset
and algorithms.

We decided to adopt the F-race algorithm implemented in [3] (with default
parameters) to automatise the way to select the best strategy for unbalanced
data. In Table 1 we used the F-race method to automatically select the unbal-
anced strategy.
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Above the diagonal, + if the method in the column is better than the method in the row
Below the diagonal, + if the method in the row is better than the method in the column

Cascade CNN EasyEnsembleENN EnnSmote NCL OSS over SMOTE SMTEns Tomek TomekE TomekS TomekU unbal under
Cascade (-) . (-) . (-) .
CNN (+) . (+) . (+) * (+) *
EasyEns
ENN (+) .
EnnSmt
NCL (+) . (+) .
OSS
over (+) * (+) * (+) * (+) *
SMT (-) . (-) .
SMTEns (-) * (-) * (-) .
Tomek (-) *
TomekE (-) . (-) * (-) . (-) ** (-) . (-) *
TomekS (-) * (-) . (-) .
TomekU (-) ** (-) * (-) . (-) * (-) ** (-) ** (-) * (-) *** (-) ** (-) ** (-) * (-) *
unbal (-) * (+) *
under (-) * (-) . (-) ** (-) . (-) .

Fig. 2. Comparison of strategies using a post-hoc Friedman test in terms of F-measure
over multiple datasets. RF results are above the diagonal, SVM below. A cell above the
diagonal is marked as (+) if the rank difference between the method in the column and
the one in the row is significantively positive, (-) otherwise. Below, (+) denotes that the
method in the row is significantively better than the one in the column, (-) otherwise.
The matrix contains the level of significance of the t-test annotated as follows: ***, **,
* and . for α = 0.001, 0.01, 0.05, 0.1. A cell is left empty if the test is not significant.

Let us remark that for almost all datasets F-race is able to return the best
method according to the cross validation (CV) assessment. In the case of Pima
and Spam datasets, F-race returns a sub-optimal strategy whose accuracy is
however not significantly different from the best one (Pvalue greater than 0.05).

The main advantage of Racing is that bad methods are not tested on the
whole dataset reducing the computation needed. Taking into consideration the
15 methods and the unbalanced case, in a 10 fold cross validation we have 160
tests to make (10 folds x 16 methods). In the case of F-race the number of
total tests depends upon how many folds are needed before F-race finds the
best method. The Gain column of Table 1 shows the computational gain (in
percentage of the the CV tests) obtained by using F-race. Apart from the Breast
Cancer dataset in all the other cases F-race allows a significant computational
saving with no loss in performance.

5 Conclusion

Recent literature in data mining and machine learning is plenty of research works
on strategies to deal with unbalanced data. However a definitive answer on the
best strategy to adopt is yet to come. Our experimental results support the
idea that the final performance is extremely dependent on the data nature and
distribution.

This consideration has lead us to adopt the F-race strategy where different
candidates (unbalanced methods) are tested simultaneously. We have showed
that this algorithm is able to select few candidates that perform better than
other without exploring the whole dataset. F-race was able to get results similar
to the cross validation for most of the dataset.
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Dataset Algo Exploration Method N test Gain Mean Sd Pval

Fraud
RF

best CV SMOTEnsemble 160 -
0.100 0.016 -

F-race SMOTEnsemble 44 73%

SVM
best CV over 160 -

0.084 0.017 -
F-race over 46 71%

Breast Cancer
RF

best CV balanceCascade 160 -
0.963 0.035 -

F-race balanceCascade 160 0%

SVM
best CV under 160 -

0.957 0.038 -
F-race under 160 0%

Car
RF

best CV OSS 160 -
0.970 0.039 -

F-race OSS 108 33%

SVM
best CV over 160 -

0.944 0.052 -
F-race over 93 42%

Forest
RF

best CV balanceCascade 160 -
0.911 0.012 -

F-race balanceCascade 60 63%

SVM
best CV ENN 160 -

0.809 0.011 -
F-race ENN 64 60%

Letter
RF

best CV balanceCascade 160 -
0.981 0.010 -

F-race balanceCascade 73 54%

SVM
best CV over 160 -

0.953 0.022 -
F-race over 44 73%

Nursery
RF

best CV SMOTE 160 -
0.809 0.047 -

F-race SMOTE 76 53%

SVM
best CV over 160 -

0.875 0.052 -
F-race over 58 64%

Pima
RF

best CV under 160 -
0.691 0.045 -

F-race under 136 15%

SVM
best CV EasyEnsemble 160 - 0.675 0.071

0.107063
F-race TomekUnder 110 31% 0.672 0.067

Satimage
RF

best CV balanceCascade 160 -
0.719 0.033 -

F-race balanceCascade 132 18%

SVM
best CV balanceCascade 160 -

0.662 0.044 -
F-race balanceCascade 90 44%

Spam
RF

best CV SMOTE 160 -
0.942 0.015 -

F-race SMOTE 122 24%

SVM
best CV SMOTEnsemble 160 - 0.917 0.018

0.266028
F-race SMOTE 135 16% 0.9178762 0.02

Women
RF

best CV TomekUnder 160 -
0.488 0.051 -

F-race TomekUnder 150 6%

SVM best CV EnnSmote 160 - 0.492 0.073 -
F-race EnnSmote 102 36%

Table 1. Comparison of Cross Validation and F-race results with Random Forest and
Support Vector Machines in terms of F-measure.

As far as the fraud dataset is concerned, we found SMOTEnsemble together
with RandomForest to be the best strategy. In this dataset the unbalanced strat-
egy chosen had a big impact on the accuracy of the results. However, as the
frauds evolve over the time the same method could become sub-optimal in the
future. In this context the F-race contribution to the selection of the best strat-
egy is crucial in order to have a detection system that adapts quickly to the new
data distribution. Within the UCI datasets we noticed that some tasks are much
easier (high accuracy) than the others and they may not have an unbalanced
method that performs significantly better than the others.
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